

S0040-4039(96)00181-5

Facile New Methods for Introduction and Removal of the Diphenylmethyl Group as a Protective Group of Carboxylic Acids

Rodrigo Paredes*, Fernando Agudelo and Gonzalo Taborda.

Departamento de Química, Universidad del Valle, Cali, Colombia.

Keywords: Diphenylmethyl Ester, Carboxylic Acid Protective Group, Intimate Ion-molecule Pair Intermediate, A_{AL}2 Mechanism.

Abstract: Easy new methods for introducing and removing the diphenylmethyl group as a protective group of carboxylic acids are presented. For the formation of the diphenylmethyl esters from the carboxylic acids and benzhydrol, the unusual $A_{\rm AL}2$ mechanism is followed.

We have studied several nucleophylic substitution reactions of benzhydrol and some of its derivatives in non polar solvents (benzene or toluene) catalyzed by para-toluenesulfonic acid. The nature of these reactions and the products formed are described in the scheme.

X = H, $CHPh_2$, COR

NuH = nucleophylic compound = Ph₂CHOH, RCO₂H, PhCH₃.

Ph₂CHNu = Ph₂CHOCHPh₂, Ph₂CHOCOR, ortho and para Ph₂CHC₆H₄CH₃.

Mechanistically we view the reactions as occurring via intimate ion-molecule pair intermediates 2 analogous to the ones proposed by Katritzky and coworkers.¹ The intermediacy of free benzhydryl carbocations in the reactions is precluded since when benzhydrol was treated with para-toluenesulfonic acid in benzene, with water removal, no triphenylmethane formed at all. Ohwada has reported that benzene traps free benzhydryl carbocations quantitatively forming triphenylmethane.² When Ph₂CH¹⁸OH was treated with PhCO₂H and a catalytic amount of TsOH in refluxing benzene under a Dean-Stark trap until no more water formed, it was found that PhCO₂CHPh₂ and H₂O¹⁸ were the products. These facts are consistent with the mechanism of the scheme which in this case corresponds to the unusual A_{AL}2 mechanism.³

Benzhydryl ether and benzhydryl benzoate are inert to hydrolysis when refluxed with para-toluenesulfonic acid in an aqueous medium (water or water-dioxane). In contrast, benzhydryl ether was converted to benzhydryl benzoate when refluxed, with water removal, with a catalytic amount of para-toluenesulfonic acid in benzene in the presence of benzoic acid. Also benzhydryl benzoate was converted to benzoic acid and tolyldiphenylmethane when refluxed with para-toluenesulfonic acid in toluene. We reason that these reactions occur because para-toluenesulfonic acid is not ionized in benzene or toluene thereby allowing the formation of 1 which is the precursor of the intimate ion-molecule pair 2. In the conversion of 1 into 2 bonds are concertedly broken and formed.

The diphenylmethyl group is a commonly used protective group for carboxylic acids.⁴ On the basis of our preceding study, we present new, easier methods for the introduction and removal of the diphenylmethyl group. For introduction, a slight excess of the carboxylic acid dissolved in benzene was refluxed with benzhydrol in the presence of a catalytic amount of para-toluenesulfonic acid under a Dean-Stark trap until no more water formed. Usual work up gave good yields of the diphenylmethyl esters (table 1).

Table 1	RCO₂H⁵	% Yield RCO2CHPh26
-	R = Ph	78
1	$R = PhCH_2$	83
	$R = Ph_2CH$	81

For removal of the CHPh₂ group, the ester dissolved in excess toluene was refluxed in the presence of an equivalent molar amount of TsOH for about 8 hours. Aqueous NaHCO₃ extraction followed by concentration, acidification and cooling gave good yields of the carboxylic acids (table 2).

Table 2	RCO2CHPh2	% Yield RCO₂H
	R = Ph	83
	$R = PhCH_2$	95
	$R = Ph_2CH$	78

References and Notes

- 1. a. Katritzky, A.R.; Masumarra, G. Chem. Soc. Rev. 1984, 13, 47 68
 - b. Katritzky, A.R.; Brycki, B.E. Chem. Soc. Rev. 1990, 19, 83 105.
- 2. Ohwada, T.; Shudo, K.J. J. Am. Chem. Soc. 1988, 110, 1862 1870.
- 3. March, J. "Advanced Organic Chemistry". 4th edit., Wiley, New York, 1992 pp 378 382.
- 4. Greene, T.W. "Protective Groups in Organic Synthesis"; Wiley, New York, 1981 pp 173 74.
- 5. The carboxylic acids were obtained from Aldrich.
- 6. PhCO₂CHPh₂: M.p. 87 88 °C (Lit.⁷ 87.5 88 °C), ¹H-NMR (CDCl₃) δ 7.1(s, 1H), 7.2 7.6(m, 13H), 8.1 8.2(m, 2H). PhCH₂CO₂CHPh₂: M.p. 94 95°C, ¹H-NMR (CDCl₃) δ 3.7(s, 2H), 6.9(s, 1H) 7.2 7.4(m, 15H). Ph₂CHCO₂CHPh₂: M.p. 107 108 °C, ¹H-NMR (CDCl₃) δ 5.15(s, 1H), 6.9(s, 1H) 7.2 7.4(m, 20H).
- 7. Hiskey, R.G.; Adams, J.B. J.Am. Chem. Soc. 1965, 87, 3969 3973.

(Received in USA 4 October 1995; revised 9 January 1996; accepted 12 January 1996)